

Sociedade Brasileira de PATOLOGIA

MOLECULAR ASPECTS IN SMALL LYMPHOCYTIC LYMPHOMA, LYMPHOPLASMACYTIC LYMPHOMA AND MANTLE CELL LYMPHOMA

Elias Campo

Hospital Clinic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona

APOYO

Molecular Studies in Small B cell Lymphomas

Differential diagnosis of disease subtypes

Understanding evolution of the disease

Prognostic groups and risk stratification

Guide management estrategies

Chronic Lymphocytic Leukemia /Monoclonal B-cell Lymphocytosis

Diagnostic criteria

- CLL: $\geq 5 \times 10^{9}$ /L clonal CD5+ B lymphocytes in blood, ≥ 3 months
- SLL: Tissue involvement; proliferation centers

- Genetic and Molecular
 - IGHV mutational status
 - 11q, 12, 13q, **17p** (FISH)
 - TP53 mutations
 - Others prognostic parameters need further studies (e.g. subclonal *TP53 mut*; BCR stereotypes, IGLV3-21R110; Complex karyotypes (≥ 3 or 5 in debate)

Hallek et al Blood 2018;131(25):2745-2760.

Disease Progression in CLL

Clonal B-cell selection and expansion

Chronic Lymphocytic Leukemia Clinical Impact of Molecular and Genetic Subtypes

IGHV 100 p < 0.00180 Percent survival 60 Mutated IGHV Unmutated IGHV 40 20 50 100 150 200 250 300 350 400 0 Months

- Cut-off 98% Homology with the germ line
- Unmutated CLL has shorter time to therapy initiation, shorter remission during therapy and shorter overal survival

 Routinely detected by FISH del (11q), trisomy 12, del (13q) del (17p)

CLL Prognosis: Cytogenetic and IGHV Mutational status

Al-Sawaf O et al J Clin Oncol 2021;39:4049-60

Fisher K et al Blood 2016 ;127:208-15

The Driver Genomic Landscape of CLL (WG/ES 1148 patients)

3.8% of patients lack a driver alteration!

Puente XA et al Nature 2015, Landau D et al Nature 2015; Knisbacher, Lin, Hahn, Nadeu, Duran-Ferrer et al. Nat Genetics 2022 Numbers from Knisbacher, Lin, Hahn, Nadeu, Duran-Ferrer et al.Nat Genetics 2022 Image from Nadeu, Annu. Rev. Pathol. Mech. Dis. 2020.

Inter- and intra-patient heterogeneity

Clinical relevance of individual mutated genes in CLL

Inter- and intra-patient heterogeneity

Adapted from Nadeu, Leukemia 2018

Trencadís on the staircase at Park Güell , Barcelona (Antoni Gaudí)

Rosi D et al Blood 2013

Clinical Impact of clonal and sublconal mutations in CLL

Nadeu F et al Blood 2016; Leukemia 2017

Beyond IGHV mutational status: IGLV3-21^{R110}

IGVL3-21 R110 CLL has a clinical evolution similar to IGHV-unmutated **CLL independently of the IGHV mutational status**

TTFT (C1-CLL: CLL, Binet A)

Nadeu F et al Blood 2020

Richter's syndrome: Pathology

DLBCL

Hodgkin Lymphoma

~ 10% of cases

~ 90% of cases

DLBCL: diffuse large B-cell lymphoma

Rossi et al., Blood 2018; 131:2761-72

Novel patterns of CLL transformation under ibrutinib: Terminal (Plasmablastic) differentiation

Richter's Transformation: Clonal Relationship

Clonally related

0

12

24

36

60

Months

72

108

96

CLL with expanded proliferation centers: "Accelerated" CLL

Accelerated

Overall Survival of Patients with Conventional and Accelerated CLL and DLBCL Transformation

"Pseudo-Richter" A pitfall in CLL treated with ibrutinib

- Unmutated IGHV CLL
- Adverse genetic alterations: TP53
- Multiple prior lines of therapy
- Ibrutinib for 10-48 months
- Ibrutinib hold (10-40 days) for different reasons: Surgery
- Evidence of progression: Nodal enlargement
- Morphology of highly proliferative "DLBCL"
- Re-introduction of ibrutinib led to clinical response
- Re-biopsy 3-6 months: CLL
- Follow-up without evidence of progression 7-30 months

TP53 Similar chromosomal landscape of RT after different treatment modalities

Nadeu F, Royo R, et al, Massoni-Badosa R, Playa-Albinyana H, Garcia B et al *Nat Medicine* 2022

Pathways Genetically Altered in RT

Early seeding of RT: tracking driver mutations by scDNA-seq

Single cell analysis detects early seeding of subclonal relapses and transformation in CLL

Nadeu et al. Nat Medicine 2022; 28(8):1662-1671

The OXPHOS^{high}-BCR^{low} transcriptional axis of RT

This axis might explain the selection and rapid expansion of small RT subclones under therapy with BCR inhibitors Monti Blood 2005; Caro Cancer Cell 2012; Norberg Cell Death Differ 2017.

Nadeu et al. Nat Medicine 2022; 28(8):1662-1671

Cellular respiration and BCR signaling in RT cells

RT: Richter transformation; BCR: B-cell receptor

Nadeu et al. Nat Medicine 2022; 28(8):1662-1671

OXPHOS pathway can be exploited therapeutically.

Caro Cancer Cell 2012; Norberg Cell Death Differ 2017; Molina Nat Med 2018; Vangapandu Oncotarget 2018; Zhang Sci Transl Med 2019; Ravera Sci Rep 2020; Chen Nat Commun 2021.

Lymphoplasmacytic lymphoma (LPL)

IgM (Waldenström's macroglobulinemia) and non-IgM (IgG, IgA)

- Neoplasm of small B-lymphocytes, plasmacytoid cells and plasma cells in bone marrow and sometimes lymph nodes and spleen.¹
- IgM paraprotein frequent but not required for diagnosis¹
- Diagnosis requires abnormal lymphoplasmacytic aggregates in the bone marrow and evidence of clonal B-cells and plasma cells:
 - Even when the aggregates represent <10% of cellularity of the bone marrow (ICC)²
 - ≥10% of the bone marrow cellularity (WHO-5ed) ³

^{1.} Swerdlow SH, et al. Blood. 2016;127(20):2375-90.

^{2.} Campo E, Jaffe ES, et al. Blood. 2022; 140(11):1229-1253.

^{3.} Alaggio R et al Leukemia 2022; 36(7):1720-1748

MYD88 L265P

- 95% WM/LPL
- 29% DLBCL-ABC
- 6% MZL
- 3% CLL

Lymphoplasmacytic Lymphoma

CXCR4

- 25-35% WM/LPL
- Associated with MYD88
- More active disease
- Less lymphadenopathy
- More resistant disease to new drugs

Patients treated with Ibrutininb

Mutations before clinical progression

- Molecular studies for MYD88 and CXCR4 mutations are strongly encouraged in the workup of suspected LPL
 - Need to be interpreted in the global context of the disease

• Absence of a *MYD88* mutation does not exclude the diagnosis of LPL (even IgM)

Tiacci et al NEJM 2011; Ngo Nature 2011; Puente Nature 2011; Xi L et al Blood 2012; Schmidt et al Br J Haematol 2015; Cao et al Leukemia, 2015 **29**, 169–176.; Xu L et al Blood 2017

Mantle Cell Lymphoma

Hospital Clinic of Barcelona

<u>Median survival</u>: 1990-2001: 3.2 yrs 2002-2017: 5.6 yrs 2018: not reached

(Courtesy Dr. López-Guilllermo)

Time (years)

Cyclin D1 Negative MCL Variant

Rearrangements	No. (%)
CCND1	0
CCND2	43 (83%)
CCND3	9 (17%)*

* They may be cryptic with conventional FISH probes

Mozos et al Haematologica 2009; Salaverria I et al Blood 2013; Martin-Garcia et al Blood 2018

Molecular Pathogenesis and Clinical Subtypes of MCL

Outcome according to cMCL and nnMCL signatures

Clot G et al Blood 2018

Different distribution of driver alterations in MCL subtypes

• Early drivers: ATM, TP53 loss, -13q3

• Late drivers: -6q, -19p, +8q (*MYC*), +18q

Nadeu F & Martin-Garcia D et al Blood 2020

Genomic alterations confer adverse outcome in both cMCL and nnMCL

Clot G et al Blood 2018

CCND1 Expression and Genomic Rearrangement as a Secondary Event in High Grade B-Cell Lymphoma and other B-cell neoplasms

Hsiao et al Histopathology. 2012 Oct;61(4):685-93. Cheng J et al Hemasphere. 2021; 5(1): e505 Schliemann I et al Leuk Lymphoma. 2016;57(11):2672-6

- Large B cell morphology
- CD5 and SOX11-negative
- Usually CCND1 rearrangement negative but...
- Unusual cases CCND1 rearranged
- Associated with multiple translocations (*BCL6, BCL2, MYC*)
- Unusual mutations (*KRAS* and *TNFRSF14*) in MCL

Conclussions and Practical approach

CLL

- Need to study IGHV and TP53 alterations (FISH, Sequence) before treatment
- Future perspective: TP53 Subclonal mutations, IGL V3-21 R110, NOTCH1 and other drivers, complex karyotypes
- Richter Transformation: Define clonal relationship

LPL

• MYD88 and CXCR4

MCL

- Consider FISH and NGS in cases SOX11-negative with blastoid/large cells cyclin D1+
- Posibly TP53 alterations in the near future

3° CONGRESO LATINOAMERICANO DE HEMATOPATOLOGÍA

SÃO PAULO | 2023

European Association for Haematopathology

REALIZACIÓN

APOYO

UNOVARTIS

GROUP