











# Molecular aspects of precursor lymphoma/leukemia in the bone marrow

Julia T Geyer, MD

Associate Professor

**Division of Pathology and Laboratory Medicine** 

**Weill Cornell Medicine** 

AstraZeneca

New York, USA











Morphology ~1 hour



Dako

A.C.Camargo

Cancer Center



#### Flow cytometry ~4-5 hours



3º CONGRESS



#### FISH (1-2 days) and karyotype (1 week)









A.C.Camargo Cancer Center

Especializado um sinta

Dako

Gene-expression profiling and genetic alteration analysis (RNA-seq)



0

Heme Fusion RNA NGS 10 days

**RNAseq 1-2 weeks** 

**Targeted DNA NGS panel 2-3 weeks** 

WGS/WES 1-2 months



SOLAHP23.COM.BR



# **B-LYMPHOBLASTIC LEUKEMIA/LYMPHOMA**



- Primarily in children (75% in <6-year-olds)
- B-ALL comprises ~80 of all ALLs, but only ~10% of lymphoblastic lymphomas
  - Leukemia vs lymphoma distinction is based on the site of involvement and the bone marrow blast count
- Cytopenias, lymphadenopathy, organomegaly, bone pain
  - Most frequent sites of involvement are skin, soft tissue, bone and lymph nodes
- Flow cytometry: CD19+, CD79a+, CD10+, TdT+, no light chain expression
- Immunohistochemistry: PAX5+, CD79a+
- Excellent prognosis in children, improving outcomes in adults





AstraZeneca UNOVARTIS





# **T-LYMPHOBLASTIC LEUKEMIA/LYMPHOMA**



- ~15% of childhood ALL and 25% of adult ALL
  - ~90% of lymphoblastic lymphoma
- More common in teenage males
- Clinical presentation: large anterior mediastinal mass, lymphadenopathy, organomegaly, common pleural effusions
- Flow cytometry: TdT+, CD1a+, CD2, CD3, CD5, CD7
- Immunohistochemistry: CD99, CD34, CD1a
- >75% have *NOTCH1* pathway activation
- Long-term response rates approach 85% in children and 60% in adults
- The most significant predictor of outcome is MRD at the end of consolidation





RECORDATI





All Cells\_

All Cells





WHO4 **10** subtypes **4** provisional

**B-lymphoblastic leukemia/lymphoma** 

B-lymphoblastic leukemia/lymphoma, NOS



SOLAHP23.COM.BR

0

Provisional entity: Natural killer (NK) cell lymphoblastic leukemia/lymphoma



| WHO Classification, 5 <sup>th</sup> edition                                   | WHO Classification, revised 4 <sup>th</sup> edition                       |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| B-cell lymphoblastic leukaemias/lymphomas                                     |                                                                           |
| B-lymphoblastic leukaemia/lymphoma, NOS                                       | (Same)                                                                    |
| B-lymphoblastic leukaemia/lymphoma with high hyperdiploidy                    | B-lymphoblastic leukaemia/lymphoma with hyperdiploidy                     |
| B-lymphoblastic leukaemia/lymphoma with hypodiploidy                          | (Same)                                                                    |
| B-lymphoblastic leukaemia/lymphoma with iAMP21                                | (Same)                                                                    |
| B-lymphoblastic leukaemia/lymphoma with BCR::ABL1 fusion                      | B-lymphoblastic leukaemia/lymphoma with t(9;22)(q34;q11.2); BCR-ABL1      |
| B-lymphoblastic leukaemia/lymphoma with <i>BCR::ABL1-</i> like features       | B-lymphoblastic leukaemia/lymphoma, BCR-ABL1-like                         |
| B-lymphoblastic leukaemia/lymphoma with <i>KMT2A</i> rearrangement            | B-lymphoblastic leukaemia/lymphoma with t(v;11q23.3); KMT2A-rearranged    |
| B-lymphoblastic leukaemia/lymphoma with <i>ETV6</i> ::<br><i>RUNX1</i> fusion | B-lymphoblastic leukaemia/lymphoma with t(12;21)(p13.2;q22.1); ETV6-RUNX1 |
| B-lymphoblastic leukaemia/lymphoma with <i>ETV6::RUNX1</i> -like features     | Not previously included                                                   |
| B-lymphoblastic leukaemia/lymphoma with TCF3::PBX1 fusion                     | B-lymphoblastic leukaemia/lymphoma with t(1;19)(q23;p13.3); TCF3-PBX1     |
| B-lymphoblastic leukaemia/lymphoma with IGH::IL3 fusion                       | B-lymphoblastic leukaemia/lymphoma with t(5;14)(q31.1;q32.1); IGH/IL3     |
| B-lymphoblastic leukaemia/lymphoma with TCF3::HLF fusion                      | Not previously included                                                   |
| B-lymphoblastic leukaemia/lymphoma with other defined genetic abnormalities   | (Same)                                                                    |
| Precursor T-cell neoplasms                                                    |                                                                           |
| T-lymphoblastic leukaemia/lymphoma                                            |                                                                           |
| T-lymphoblastic leukaemia / lymphoma, NOS                                     | T-lymphoblastic leukaemia/lymphoma                                        |
| Early T-precursor lymphoblastic leukaemia / lymphoma                          | Early T-cell precursor lymphoblastic leukaemia                            |
| (Entity deleted)                                                              | NK-lymphoblastic leukaemia/lymphoma                                       |

| WHO Classification, 5 <sup>th</sup> edition                                   | WHO Classification, revised 4 <sup>th</sup> edition                       |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| B-cell lymphoblastic leukaemia <mark>s//umphomas</mark>                       |                                                                           |
| B-lymphoblastic leukaemia/lym                                                 | (Same)                                                                    |
| B-lymphoblastic leukaemia/lymphoma with nigh hyperdiploidy                    | B-lymphoblastic leukaemia/lymphoma with hyperdiploidy                     |
| B-lymphoblastic leukaemia/lym                                                 | (Same)                                                                    |
| B-lymphoblastic leukaemia/lym L5 SUDTYPES                                     | (Same)                                                                    |
| B-lymphoblastic leukaemia/lym                                                 | B-lymphoblastic leukaemia/lymphoma with t(9;22)(q34;q11.2); BCR-ABL1      |
| B-lymphoblastic leukaemia/lym<br>features                                     | B-lymphoblastic leukaemia/lymphoma, BCR-ABL1-like                         |
| B-lymphoblastic leukaemia/lymphoma with <i>KMT2A</i><br>rearrangement         | B-lymphoblastic leukaemia/lymphoma with t(v;11q23.3); KMT2A-rearranged    |
| B-lymphoblastic leukaemia/lymphoma with <i>ETV6</i> ::<br><i>RUNX1</i> fusion | B-lymphoblastic leukaemia/lymphoma with t(12;21)(p13.2;q22.1); ETV6-RUNX1 |
| B-lymphoblastic leukaemia/lymphoma with ETV6::RUNX1-like features             | Not previously included                                                   |
| B-lymphoblastic leukaemia/lymphoma with TCF3::PBX1 fusion                     | B-lymphoblastic leukaemia/lymphoma with t(1;19)(q23;p13.3); TCF3-PBX1     |
| B-lymphoblastic leukaemia/lymphoma with IGH::IL3 fusion                       | B-lymphoblastic leukaemia/lymphoma with t(5;14)(q31.1;q32.1); IGH/IL3     |
| B-lymphoblastic leukaemia/lymphoma with TCF3::HLF fusion                      | Not previously included                                                   |
| B-lymphoblastic leukaemia/lymphoma with other defined genetic abnormalities   | (Same)                                                                    |
| Precursor T-cell neoplasms                                                    |                                                                           |
| T-lymphoblastic leukaemia/lymphoma                                            |                                                                           |
| T-lymphoblastic leukaemia / lymphoma, NOS                                     | T-lymphoblastic leukaemia/lymphoma                                        |
| Early T-precursor lymphoblastic leukaemia / lymphoma                          | Early T-cell precursor lymphoblastic leukaemia                            |
|                                                                               |                                                                           |

(Entity deleted)

NK-lymphoblastic leukaemia/lymphoma

# WHO CLASSIFICATION 5<sup>th</sup> Edition



The classification remains largely unchanged from the previous WHO and has similar terminology, ie "B-lymphoblastic leukemia/lymphoma"

• Abbreviated as "B-ALL or T-ALL"

Most entities based on broadly-available cytogenetic testing

The rare B-ALL with TCF3::HLF fusion has been added as it is distinct from B-ALL with TCF3::PBX1 fusion and is characterized by a particularly aggressive behavior

B-ALL with BCR::ABL1-like features is now an entity (previously a provisional entity), as it is prevalent and shows significant benefit from targeted therapies

"B-ALL with other defined genetic abnormalities" incorporates several novel genetic drivers identified by recent gene expression and sequencing studies

- B-ALL with DUX4, MEF2D, ZNF384 or NUTM1 rearrangements; IG::MYC fusion; PAX5alt or PAX5 p.P80R abnormalities
- May be separated in the future as potential novel entities





RECORDATI AstraZeneca NOVARTIS

# WHO CLASSIFICATION 5<sup>th</sup> Edition



UNOVARTIS

- Genetic abnormalities are now the fundamental basis for subclassification of B-ALL
- The category B-ALL/LBL, NOS should only be used for cases lacking defined genetic abnormalities after **comprehensive testing**
- In the absence of complete testing for genetic abnormalities, definitive diagnosis may not be possible and the category B-ALL/LBL, NFC (not further classified) should be used



# ICC

# 25 subtypes14 provisional

B-acute lymphoblastic leukemia (B-ALL) B-ALL with recurrent genetic abnormalities B-ALLwith t(9;22)(q34.1;q11.2)/BCR::ABL1 with lymphoid only involvement with multilineage involvement B-ALLwith t(v;11q23.3)/KMT2A rearranged B-ALL with t(12;21)(p13.2;q22.1)/ETV6::RUNX1 **B-ALL**, hyperdiploid B-ALL, low hypodiploid B-ALL, near haploid B-ALL with t(5;14)(q31.1;q32.3)/IL3::IGH B-ALL with t(1;19)(q23.3;p13.3)/TCF3::PBX1 B-ALL, BCR:: ABL1-like, ABL-1 class rearranged B-ALL, BCR:: ABL1-like, JAK-STAT activated B-ALL, BCR:: ABL1-like , NOS B-ALL with iAMP21 B-ALL with *MYC* rearrangement B-ALL with DUX4 rearrangement B-ALL with *MEF2D* rearrangement B-ALL with ZNF384(362) rearrangement B-ALL with *NUTM1* rearrangement B-ALL with *HLF* rearrangement B-ALL with UBTF::ATXN7L3/PAN3,CDX2 ("CDX2/UBTF") B-ALL with mutated *IKZF1* N159Y B-ALLwith mutated PAX5 P80R Provisional entity: B-ALL, ETV6::RUNX1-like Provisional entity: B-ALL, with PAX5 alteration Provisional entity: B-ALL, with mutated ZEB2 (p.H1038R)/IGH::CEBPE Provisional entity: B-ALL, ZNF384 rearranged-like Provisional entity: B-ALL, KMT2A rearranged-like **B-ALL, NOS** T-ALL Early T-cell precursor ALLwith BCL11B rearrangement Early T-cell precursor ALL, NOS T-ALL, NOS Provisional entities (see Supplemental Table 7) Provisional entity: Natural killer (NK) cell ALL



SOLAHP23.COM.BR

EA&P





# ICC

# 25 subtypes14 provisional

SOLAHP23.COM.BR

C FAGP

| B-acute lymphoblastic leukemia (B-ALL)                                            |
|-----------------------------------------------------------------------------------|
| B-ALL with recurrent genetic abnormalities                                        |
| B-ALLwith t(9;22)(q34.1;q11.2)/ <i>BCR::ABL1</i>                                  |
| with lymphoid only involvement                                                    |
| with multilineage involvement                                                     |
| B-ALLwith t(v;11q23.3)/ <i>KMT2A</i> rearranged                                   |
| B-ALL with t(12;21)(p13.2;q22.1)/ <i>ETV6::RUNX1</i>                              |
| B-ALL, hyperdiploid                                                               |
| B-ALL, low hypodiploid                                                            |
| B-ALL, near haploid                                                               |
| B-ALL with t(5;14)(q31.1;q32.3)/ <i>IL3::IGH</i>                                  |
| B-ALL with t(1;19)(q23.3;p13.3)/ <i>TCF3::PBX1</i>                                |
| B-ALL, BCR::ABL1–like , ABL-1 class rearranged                                    |
| B-ALL, BCR::ABL1–like , JAK-STAT activated                                        |
| B-ALL, <i>BCR</i> :: <i>ABL1</i> –like , NOS                                      |
| B-ALL with iAMP21                                                                 |
| B-ALL with <i>MYC</i> rearrangement                                               |
| B-ALL with <i>DUX4</i> rearrangement                                              |
| B-ALL with <i>MEF2D</i> rearrangement                                             |
| B-ALL with ZNF384(362) rearrangement                                              |
| B-ALL with <i>NUTM1</i> rearrangement                                             |
| B-ALL with <i>HLF</i> rearrangement                                               |
| B-ALL with UBTF::ATXN7L3/PAN3,CDX2("CDX2/UBTF")                                   |
| B-ALL with mutated <i>IKZF1</i> N159Y                                             |
| B-ALLwith mutated PAX5 P80R                                                       |
| Provisional entity: B-ALL, ETV6::RUNX1-like                                       |
| Provisional entity: B-ALL, with PAX5 alteration                                   |
| Provisional entity: B-ALL, with mutated <i>ZEB2</i> (p.H1038R)/IGH:: <i>CEBPE</i> |
| Provisional entity: B-ALL, ZNF384 rearranged-like                                 |
| Provisional entity: B-ALL, KMT2A rearranged-like                                  |
| B-ALL, NOS                                                                        |
| T-ALL                                                                             |
| Early T-cell precursor ALLwith <i>BCL11B</i> rearrangement                        |
| Early T-cell precursor ALL, NOS                                                   |
| T-ALL, NOS                                                                        |
| Provisional entities (see Supplemental Table 7)                                   |
| Provisional entity: Natural killer (NK) cell ALL                                  |



|           | T-ALL/LL provisional entities |                    |                                 |  |
|-----------|-------------------------------|--------------------|---------------------------------|--|
|           | Subtype                       | Frequency          | Partner genes/other re          |  |
|           | HOXA                          | 15-25%             | HOXA::TRB/TRG; KMT2             |  |
|           | dysregulated                  |                    | PICALM::MLLT10; SET:            |  |
|           | SPI1                          | <5%, children      | STMN1; TCF7; BCL11B             |  |
|           | rearrangement                 |                    |                                 |  |
|           | TLX1                          | 5-10%              | TCR                             |  |
|           | rearrangement                 | children; near     |                                 |  |
|           |                               | 30% adult          |                                 |  |
|           | TLX3                          | 20-25%             | TCR; BCL11B; CDK6               |  |
|           | rearrangement                 | children <5%       |                                 |  |
|           | -                             | adult              |                                 |  |
|           |                               |                    |                                 |  |
|           |                               |                    |                                 |  |
|           | NKX2                          | <5% children       | NKX2.1/NKX2.2/NKX2.             |  |
|           | rearrangement                 |                    |                                 |  |
|           | TAL1-2                        | 30-40%             | TRA/D; TRB ( <i>TAL2</i> ); 1p3 |  |
|           | rearrangement                 | (TAL2 rare)        | intergenic SNV (super e         |  |
|           | LM01-2                        | <i>LMO1</i> -R -5% | TCR; cryptic deletion; e        |  |
|           | rearrangement                 | <i>LMO2</i> -R 10% | mutations                       |  |
|           |                               |                    |                                 |  |
|           |                               |                    |                                 |  |
|           |                               |                    |                                 |  |
|           | BHLH, other                   | <2%                | LYL1::TRB                       |  |
|           |                               |                    | OLIG2/BHLHB1::TCR               |  |
|           |                               |                    | ,                               |  |
|           |                               | 23                 |                                 |  |
| A         | IN NOVAD                      | anssen             | Cancer Center Dollar            |  |
| azeneca Z | UNUVAN                        | 10 maple           | DdkU                            |  |

Fig. 1 Gene expression clustering of B-ALL cases. The figure depicts two dimensional clustering using t-distributed stochastic neighbor embedding of whole transcriptome sequencing data from 2041 leukemia samples collected at diagnosis from children or adults with ALL. Cases are color coded by subtype. This approach, and much of the data, was first reported by Gu, et al. [3], and has been updated to include additional CDX2/UBTF cases following recent definition of this subtype

tSNE-2



Duffield AS, et al. Virchows Archiv 2022 Gu Z, et al. Nat Genet 2019

tSNE-1

DGÍA

# **INTERNATIONAL CONSENSUS CLASSIFICATION (ICC)**



RECORDATI

- Incorporates recent clinical, cytogenetic, and molecular data, with a
  particular emphasis on whole transcriptome analysis and gene expression
  clustering studies
- Renamed "B- and T-acute lymphoblastic leukemia"
  - Abbreviated as B-ALL or T-ALL, same as the WHO
- 9 new B-ALL categories, including 7/9 with distinguishing gene rearrangements, and 2/9 characterized by a specific single gene mutation
- 4 provisional B-ALL entities are included, that require gene expression studies
- 1 new subtype of early T-cell precursor ALL
- 8 new provisional T-ALL entities are added



## B-ALL with t(9;22)(q34;q11.2) / BCR::ABL1



- The incidence increases with age, more common in adults
- The main differential diagnosis is with blast phase CML
  - Most childhood ALLs have a p190kd BCR-ABL1 protein product, while most adults with CML have a p210kd fusion protein
- ICC divides into 2 distinct subsets distinguished by FISH
  - With lymphoid only involvement (translocation only in lymphoblasts) DE NOVO
  - With multilineage involvement (translocation detected in neutrophils) akin to CML in blast phase

RECORDATI ASTRAZEDECA UNOVARTIS

- Prognosis and treatment may differ
- Immunophenotype: frequently express myeloid-associated markers, such as CD13, CD33, CD66c and expression of CD25 is common in adults
- Molecular diagnosis: karyotyping, FISH, PCR, DNA or RNA sequencing is required
- Prognosis: historically low, but improving with use of targeted therapies



### **CLINICAL EXAMPLE**



#### 21-year-old, previously healthy woman



#### PERIPHERAL BLOOD DIFFERENTIAL CELL COUNT: 300 CELLS:

|       | 77.43 10 <sup>3</sup> /μL | NEUTR |
|-------|---------------------------|-------|
|       | 2.97 10 <sup>6</sup> /μL  | BAND  |
|       | 8.6 g/dL                  | META  |
|       | 26.6 %                    | MYELO |
|       | 89.6 fL                   | PROMY |
| ELETS | 37 10 <sup>3</sup> /μL    | BLAST |
| 2     | 2/100 WBC                 |       |
|       |                           |       |

AstraZeneca

APOYO

| %  |
|----|
| 58 |
| 8  |
| 8  |
| 11 |
| 1  |
| 4  |
|    |

UNOVARTIS pansser

#### % 5 LYMPHOCYTES **MONOCYTES** 2 EOSINOPHILS 2

BASOPHILS





Karyotype on peripheral blood: 46,XX,t(9;22)(q34;q11.2)[20]

FISH on peripheral blood: BCR::ABL1 gene rearrangements in 92% of 200 nuclei PCR: *BCR-ABL1* (e13a2 or e14a2) fusion transcripts coding for p210 positive at 84.98%

U NOVARTIS

Jako

AstraZeneca









The patient was treated with prednisone/ponatinib/blinatumumab solahp2 per MDACC protocol





Dako

SOLAHP23.COM



No evidence of residual B-ALL by MRD flow cytometry analysis Karyotype: 46,XX,t(9;22)(q34;q11.2)[14]/46,XX[6] FISH: BCR::ABL1 gene rearrangements in 75% of 200 nuclei PCR: *BCR-ABL1* (e13a2 or e14a2) fusion transcripts coding for p210 positive at 64.25%





## **CLINICAL EXAMPLE**



- Treated with HyperCVAD and ponatinib→ bone marrow morphology completely normal and no evidence of MRD by flow cytometry
  - Karyotype on peripheral blood: 46,XX[20]
  - FISH on peripheral blood: BCR::ABL1 gene rearrangements in 75% of 200 nuclei
  - PCR: *BCR-ABL1* (e13a2 or e14a2) fusion transcripts coding for p210 positive at 0.51%
- The patient underwent a bone marrow transplant and is currently in complete remission

RECORDATI RARE DISEASES AStraZeneca





Dako

## **B-ALL with t(v;11q23.3) /** *KMT2A* rearranged



- May occur in utero, since this ALL presents in very young infants (most common leukemia in infants)
- The incidence decreases in childhood, but then becomes more common again in adults
- Immunophenotype: the blasts are typically CD19+, CD10-, CD24-, and are often positive for the myeloid markers CD15 and CD65s as well as the neural/glial antigen NG2; TdT is frequently negative
- Molecular diagnosis: suspected by translocations/inversions at 11q23 but requires verification by FISH, RT-PCR or NGS
  - *KMT2A* rearrangements can be "cryptic" by karyotype and/or FISH studies and require NGS evaluation

RECORDATI

• Prognosis: poor



#### 31-year-old man

All Cells\_



Karyotype: 46,XY,t(4;11)(q21;q23)[3]/47~48,idem,+X,+1[cp7]/46,XY[10] FISH: KMT2A (MLL) gene rearrangement was observed in 85% of 200 interphase nuclei Received a stem cell transplant, in remission after 3-year follow-up

## B-ALL with t(12;21)(p13;q22) / ETV6::RUNX1



- The most common recurrent translocation in children
  - not seen in babies, very rare in adults
- Immunophenotype: positive for CD10, CD19 and CD34; near complete absence of CD9, CD20 and CD66c; myeloid-associated antigens (CD13 and CD33) are frequently expressed
- Molecular diagnosis: identifiable by FISH, RT-PCR, and RNA sequencing methods

RECORDATI RARE DISEASES ASTRAZEDECA UNOVARTIS

- Usually NOT detected by standard cytogenetics
- Prognosis: excellent





- Karyotype: 46,XY[20]
- FISH: ETV6-RUNX1 rearrangement in 94% of 200 interphase nuclei, indicating the presence of a cryptic t(12;21) translocation
- MRD positive at end of induction; relapsed after 2 years of consolidation therapy. Subsequently achieved MRDnegative CR2 following CD19-directed CAR T-cell therapy, followed by HLA-matched stem cell transplant. In remission 3 years after initial diagnosis

## B-ALL, HYPERDIPLOID (ICC) B-ALL WITH HIGH HYPERDIPLOIDY (WHO)



- Hyperdiploidy (51-65 chromosomes) occurs usually in children
  - recurrent, non-random gains of one or more copies of entire chromosomes, usually chromosomes X, 4, 6, 10, 14, 17, 18 and 21
- Common in children, uncommon in adults
- Immunophenotype: no unique features
- Molecular diagnosis: identifiable by karyotype, FISH, flow cytometric DNA index or SNP arrays
- Prognosis: very favorable





AstraZeneca UNOVARTIS



#### 54,XX,+X,+6,+10,+14,+17,+18,+21,+21 (hyperdiploid)

FISH for 4, 10, and 17



SOLAHP23.COM.BR

Slide courtesy of Dr. Liming Bao, Division of Cytogenetics, Weill Cornell Medicine

## B-ALL, LOW HYPODIPLOID AND NEAR HAPLOID (ICC) B-ALL WITH HYPODIPLOIDY (WHO)

3º CONGRESO LATINOAMERICANO DE HEMATOPATOLOGÍA SÃO PAULO | 2023

- Hypodiploidy is defined by the WHO5 as  $\leq$ 43 chromosomes
  - Near-haploid (24-31 chromosomes)
  - Low-hypodiploid (32-39 chromosomes)
  - High-hypodiploid (40-43 chromosomes)
- ICC formally separates 2 categories:
  - B-ALL, near haploid (24-31 chromosomes): more common in children
  - B-ALL, low hypodiploid (32-39 chromosomes): more common in adults, associated with IKZF2 deletions and TP53 mutations
- Immunophenotype: no unique features
- Molecular diagnosis: karyotype, flow cytometry DNA index, FISH, and SNP arrays
- Prognosis: poor for all subtypes





RECORDATI

### **Hypodiploid B-ALL**



38,XY,-2,-3,-7,-12,-13,-14,-16,-17,+mar



SOLAHP23.COM.BR



Slide courtesy of Dr. Liming Bao, Division of Cytogenetics, Weill Cornell Medicine

## B-ALL with t(5;14)(q31.1;q32.3) / *IL3::IGH*



- t(5;14)(q31;q32); *IGH-IL3* is characterized by marked bone marrow and peripheral blood reactive eosinophilia
- Very rare disease, most patients are children and young adults
- Clinical presentation: neoplastic blasts can be low in number and obscured by the eosinophilic proliferation
- Immunophenotype: no unique features
- Molecular diagnosis: identifiable by karyotype and FISH
- Prognosis: uncertain due to low number of reported cases





RECORDATI PAPE DISEASES ASTRAZEDECA



57-year-old man who presented in July 2021 with myocardial infarction and was found to have marked eosinophilia



PERIPHERAL BLOOD DIFFERENTIAL CELL COUNT: 200 CELLS:

| BC      | $8.91 \ 10^{3}/\mu L$    |
|---------|--------------------------|
| С       | 4.49 10 <sup>6</sup> /μL |
| βB      | 9.0 g/dL                 |
| ΣT      | 28.3 %                   |
| CV      | 63.0 fL                  |
| ATELETS | 196 10 <sup>3</sup> /µL  |
| BC      | 0/100 WBC                |
|         |                          |

RECORDATI RARE DISEASES

APOYO

| NEUTROPHILS  |
|--------------|
| BAND         |
| META         |
| MYELOCYTE    |
| PROMYELOCYTE |
| BLAST        |

AstraZeneca UNOVARTIS

| %  |             | %  |
|----|-------------|----|
| 14 | LYMPHOCYTES | 35 |
|    | MONOCYTES   | 2  |
|    | EOSINOPHILS | 49 |
|    | BASOPHILS   |    |

Jako

# Bone Marrow Aspirate Smear: BONE MARROW ASPIRATE SMEAR DIFFERENTIAL CELL COUNT: 500 CELLS

| TYPE              | %  | TYPE          | %   |
|-------------------|----|---------------|-----|
| BLAST             | 5  | PRONORMOBLAST | 4   |
| PROMYELOCYTE      | 0  | NORMOBLAST    | 48  |
| MYELOCYTE         | 2  | MONOCYTE      | 1   |
| METAMYELOCYTE     | 1  | LYMPHOCYTE    | 17  |
| BAND / NEUTROPHIL | 5  | PLASMA CELLS  | 7   |
| EOSINOPHIL        | 10 | OTHERS        |     |
| BASOPHIL          | 0  | M:E RATIO     | 0.4 |
|                   |    |               |     |















- Myeloid NGS panel showed IDH2 (R140Q, MAF 5.3%) and SRSF2 (P95H, MAF 10.6%)
- Normal male karyotype
- FISH studies did not detect rearrangements in BCR-ABL1, PDGFRA, PDGFRB, FGFR1 and JAK2
  - Interphase FISH showed IGH gene rearrangement in 2.5% of 200 cells analyzed (below the cut off limit of reporting an abnormal result (4.43%))
- Patient clinically assumed to have chronic eosinophilic leukemia and treated with prednisone, however eosinophilia did not resolve
- Following the bone marrow review the patient was treated with HyperCVAD and achieved complete remission





RECORDATI AstraZeneca UNOVARTIS

#### SOLAHP23.COM.BR

| ULIN                  | IUAL UA              | JL   |     |
|-----------------------|----------------------|------|-----|
| The patie<br>presenta | ent relapsed<br>tion | with | ove |

#### PERIPHERAL BLOOD DIFFERENTIAL CELL COUNT: 100 CELLS:

Sociedade Brasileira de PATOLOCIA

|           |                          |              | %  |             | %  |
|-----------|--------------------------|--------------|----|-------------|----|
| WBC       | 8.14 10 <sup>3</sup> /μL | NEUTROPHILS  | 40 | LYMPHOCYTES | 20 |
| RBC       | 3.67 10 <sup>6</sup> /μL | BAND         | 8  | MONOCYTES   | 2  |
| HGB       | 8.7 g/dL                 | META         |    | EOSINOPHILS | 24 |
| НСТ       | 28.2 %                   | MYELOCYTE    |    | BASOPHILS   | 2  |
| MCV       | 76.8 fL                  | PROMYELOCYTE |    |             |    |
| PLATELETS | 64 10 <sup>3</sup> /μL   | BLAST        | 4  |             |    |
| NRBC      | 3/100 WBC                |              |    |             |    |



RECORDATI

APOYO



# CI INICAL CASE



Bone marrow karyotype: t(5;14)(q31.1;q32.3)[7]/46,XY[13] NGS: SRSF2 mutation (VAF 3.4%); CREBBP (VAF 6.2%)

SOLAHP23.COM.BR



RECORDATI RARE DISEASES AstraZeneca

Jako





- Gene expression profile is similar to BCR-ABL1+ ALL, but lacking the BCR::ABL1 gene rearrangement
- Accounts for 10% of pediatric and 25% of adult ALL
- Very high incidence in children with Down syndrome
- ICC separates the entity into 3 subtypes:
  - ABL-1 class rearranged, includes fusions between ABL1, ABL2, CSF1R or PDGFRB and may respond to TKI inhibitors
  - JAK-STAT activated, includes CRLF2 rearrangement and diverse mutations in JAK or RAS pathway genes; may be considered for JAK inhibitors
  - NOS, other kinases and cytokine receptor abnormalities, many seem to respond to TKI inhibitors
- Immunophenotype: TSLPR (encoded by CRLF2) overexpression by is a surrogate for CRLF2 rearrangement









- Molecular diagnosis: very complex and highly specialized!
  - Cytogenetics and FISH used to rule out known molecular subgroups, which are usually mutually exclusive.
  - The majority of *BCR::ABL1*-like ALL rearrangements are cytogenetically cryptic
  - Break-apart FISH probes are available to identify the major rearrangements (*ABL1, ABL2, CRLF2, EPOR, JAK2* and *PDGFRB*)
  - DNA and RNA sequencing
  - Whole transcriptome analysis / targeted RNA sequencing are the most reliable methods
- Prognosis: overall poor (resistant to standard chemotherapy), but many ongoing clinical trials





75-year-old man with a new diagnosis of B-ALL

PERIPHERAL BLOOD DIFFERENTIAL CELL COUNT: 200 CELLS:

|           |                          |              | %  |              | %  |
|-----------|--------------------------|--------------|----|--------------|----|
| WBC       | 3.32 10 <sup>3</sup> /μL | NEUTROPHILS  | 34 | LYMPHOCYTES  | 30 |
| RBC       | 3.85 10 <sup>6</sup> /μL | BAND         | 4  | MONOCYTES    | 3  |
| HGB       | 10.5 g/dL                | META         |    | EOSINOPHILS  |    |
| HCT       | 30.4 %                   | MYELOCYTE    |    | BASOPHILS    |    |
| MCV       | 79.0 fL                  | PROMYELOCYTE |    | PLASMA CELLS | 1  |
| PLATELETS | 8 10 <sup>3</sup> /μL    | BLAST        | 28 |              |    |
| NRBC      | 0 /100 WBC               |              |    |              |    |

023

Cancer Center

Dako





75-year-old man with a new diagnosis of B-ALL

PERIPHERAL BLOOD DIFFERENTIAL CELL COUNT: 200 CELLS:

|           |                          |              | %  |              |
|-----------|--------------------------|--------------|----|--------------|
| WBC       | 3.32 10 <sup>3</sup> /μL | NEUTROPHILS  | 34 | LYMPHOCYTES  |
| RBC       | 3.85 10 <sup>6</sup> /μL | BAND         | 4  | MONOCYTES    |
| HGB       | 10.5 g/dL                | META         |    | EOSINOPHILS  |
| HCT       | 30.4 %                   | MYELOCYTE    |    | BASOPHILS    |
| MCV       | 79.0 fL                  | PROMYELOCYTE |    | PLASMA CELLS |
| PLATELETS | 8 10 <sup>3</sup> /μL    | BLAST        | 28 |              |
| NRBC      | 0 /100 WBC               |              |    |              |

% 30

3





- Karyotype: 48,XY,+X,add(14)(q32),+22[1]/46,XY[13]
- FISH: positive for rearrangements of IGH, CRLF2, P2RY8 and PDGFRB; negative for BCR::ABL1 gene fusion or KMT2A rearrangement
- Heme fusion RNA NGS panel (Archer): CD74-PDGFRB fusion transcript (96% of reads); P2RY8-IGH rearrangement was detected in this sample (96% of reads); marked increase in CRLF2 transcript expression
- Myeloid NGS panel: mutations in JAK2 R683G (VAF 10%) and KRAS G13D (VAF 7%)

RECORDATI PARE DISEASES ASTRAZEDECA UNOVARTIS







Jako

• The patient was treated with mini hyperCVD (lower intensity than hyper-CVAD) + inotuzumab (anti-CD22 antibody) and achieved complete remission

ADOA

RECORDATI

- Followed by blinatumomab (anti-CD19 bispecific T-cell engager)
- In remission 6 months following the initial presentation





# EARLY T-CELL PRECURSOR ALL



AstraZeneca

- T-ALL with a unique immunophenotype of immature T cell precursor with myeloid differentiation
- About 15% of pediatric and 20-40% of adult T-ALL cases
- They are characterized by multilineage differentiation potential and expression of lymphoid, myeloid and stem cell markers
- Genetically heterogeneous
- Mutation profiles are more similar to AML than T-ALL
- Prognosis of this entity is controversial



# DIAGNOSTIC CRITERIA (WHO 5<sup>th</sup> Edition)



| ETP-ALL/LBL: Must meet all 5 criteria of antigen expression                                             |
|---------------------------------------------------------------------------------------------------------|
| 1. CD3 (cytoplasmic +/surface- <sup>a</sup> )                                                           |
| 2. Absent myeloperoxidase (<10% by flow cytometry, <3% by cytochemistry)                                |
| 3. Absent CD1a and CD8                                                                                  |
| 4. ≥25% of blasts with ≥1 of stem cell or myeloid markers: CD34, CD117, CD13, CD33, CD65, CD11b, HLA-DR |
| 5. Dim to negative CD5 (<75% of blasts positive) <sup>b</sup>                                           |
| Near ETP-ALL: Criteria 1-4 met, however ≥75% blasts are CD5 positive                                    |
| a. Expression of surface CD3 is rare                                                                    |

APOY

b. Dim CD5 can be also defined as mean fluorescent intensity (MFI) that is at least 1 log less than that of normal T cells; with this approach, MFI of T cells should be at least two logs greater than that of negative control.

Near ETP-ALL has different genetic lesions than ETP-ALL Minor differences in clinical presentation and response to therapy Overall, clinical implications of neat ETP-ALL are still unclear





RARE DISEASES ASTRAZENECA



Dako

ancer Center





RECORDATI

# EARLY T-CELL PRECURSOR ALL, *BCL 11B*-ACTIVATED (ICC)



iociedade Irasileira de Ivarros rocas

SOLAHP23.COM.BR

A distinct subgroup of immature acute leukemias covering AML, T/myeloid mixed-phenotype acute leukemia (T/M MPAL), and early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) are characterized by rearrangements at 14q32/BCL11B

3º CONGRESO LATINOAMERICANO DE

Di Giacomo D, et al. Blood (2021) 138 (9): 773-784

# EARLY T-CELL PRECURSOR ALL, *BCL 11B*-ACTIVATED (ICC)



- About 1/3 of ETP-ALL cases is characterized by rearrangement and deregulation of the T-lineage transcription factor gene BCL11B in the stem cells
- The BCL11B protein is a critical transcription factor in regulating thymic T lineage commitment and specification, and its overexpression leads to the inhibition of the T cell differentiation and activation of the JAK/STAT transduction pathway
- >80% of the cases have activating FLT3 mutations
- All rearrangements relocate super-enhancers to positions near the BCL11B gene at 14q32.2, leading to increased BCL11B expression
- Most of the cases can be detected by FISH analysis (14q32 break apart probe)
  - several BCL11B-related rearrangements, including t(2;14), t(3;14), t(6;14), t(7;14), t(8;14), t(12;14) and t(14;21)

RECORDATI

diverse fusion partners (*ZEB2* at 2q22.3, *SATB1* at 3p24.3, *ARID1* at 6q25.3, *CDK6* at 7q22.1, *CCDC26/MYC* at 8q24.2, *ETV6* at 12p13.2, and *RUNX1* at 21q22.1)



#### Enhancer Hijacking Drives Oncogenic BCL11B Expression in Lineage-Ambiguous Stem Cell Leukemia





tSNE projection analysis of 1,114 leukemia transcriptomes.

Sociedade Brasileira de PATOLOGIA

Left panel shows samples colored by original diagnosis; right panel shows samples colored by driver genomic alteration. Samples belonging to the BCL11B group are circled.



In *BCL11B*-a acute leukemia cases, *BCL11B* was activated, showing a significant upregulation compared with AML (P < .0001) and similar levels of expression compared with cases of T-ALL and ETP-ALL.

SOLAHP23.COM.BR



Di Giacomo D, et al. Blood (2021) 138 (9): 773–784

# EARLY T-CELL PRECURSOR ALL, *BCL 11B*-ACTIVATED (ICC)

- B<sup>2</sup> CONGRESO LATINOAMERIGANO DE HEMATOPATOLOGÍA SÃO PAULO | 2023
- Comparing the specific drug sensitivities to an unrelated cohort of T-ALL cases, in *BCL11B*-a acute leukemia cases, there was a striking decrease in activity for the genotoxic agents used in both AML and T-ALL, such as docetaxel, mitoxantrone, idarubicin, etoposide, doxorubicin, cytarabine, gemcitabine, and topotecan
- There was higher sensitivity to tyrosine kinases (sunitinib, crenolanib) and JAK/STAT inhibitors (NVPBVB808, momelotinib, fedratinib, and NVP-BSK805) in *BCL11B*-aAL cases compared with other T-ALL samples
- Of note, the tyrosine kinase inhibitor midostaurin showed low activity in *BCL11B*-a acute leukemia cases, despite the presence of *FLT3* mutations, indicating that drug sensitivities may depend on more complex factors than candidate gene mutations





#### **3° CONGRESO** LATINOAMERICANO DE HEMATOPATOLOGÍA

SÃO PAULO | 2023





European Association for Haematopathology

REALIZACIÓN

APOYO





**U**NOVARTIS







GROUP